Transformer, BERT/GPT series

Review

Paper https://arxiv.org/pdf/2106.01702.pdf Slides http://140.122.184.128/presentation/22-07-12/Psy QA-%20A%20Chinese%20Dataset%20for%20Genera ting%20Long%20Counseling%20Text%20for%20Me ntal%20Health%20Support_slide.pdf

PsyQA:Question

• Chinese dataset of Psychological health support in the form of Question-Answer pair

Question (Post Title)

为什么有些事情越想心越闷? The more I think about some things, the more upset I feel. Why?

Description (Post Content)

比如家里人说我和别人相亲的事,我是不太主动比较被动的人……又怪自己,又恨别人到处说,搞得心里很难受很郁闷,这该怎么办? For example, my family asked me to go on a blind date with others. I am not an active but passive person. ... I blame myself and blame others for speaking ill of me everywhere, making me very uncomfortable and depressed. What should I do?

Keywords

情绪 表达情绪 情绪调节 情绪智力 Emotion, Emotion Expression, Emotion Regulation, EQ 你好呀~事情越想越闷可能是陷入了反刍思维 中。反刍式思考是指 …… 反刍思维作为一种认 知,对情绪也有重要的影响。在这种情况下, 你首先要冷静下来 ……比如自己闷在家里没出 去相亲,家人就说自己是不是想打光棍儿。其 实你仔细看这两件事情并没有因果关系。…… 但这样的逻辑也是不太合情理的。当然,在这 种情况下,你也可以使用转移注意力的方式, 让自己的情绪稍微平复下来。比如做一次冥想 练习,或者出去做运动。

Hi ~ The more you think about it, the more depressed you feel. This is maybe because you are trapped in ruminant thinking. Ruminant thinking means that Ruminant thinking, as a form of cognition, also has an important effect on emotion. In this case, you need to calm down first... For example, you stayed at home and didn't go out for a blind date, and your family said that you just wanted to be single. When you look at it carefully, there is no causal relationship between the two events. But this logic doesn't work. Of course, in this case, you can also distract your attention to calm yourself down a bit. Take a meditation practice, or go outside to exercise.

Strategy Identification

- Task
 - Assign a strategy label to each sentence in a long answer
- Implement method
 - RoBERTa
- Data Preparation
 - Dataset
 - Annotated part of PsyQA
 - Randomly split them into train (80%), dev (10%) and test (10%) sets.

你好呀~事情越想越闷可能是陷入了反刍思维 中。反刍式思考是指 …… 反刍思维作为一种认 知,对情绪也有重要的影响。在这种情况下, 你首先要冷静下来 ……比如自己闷在家里没出 去相亲,家人就说自己是不是想打光棍儿。其 实你仔细看这两件事情并没有因果关系。…… 但这样的逻辑也是不太合情理的。当然,在这 种情况下,你也可以使用转移注意力的方式, 让自己的情绪稍微平复下来。比如做一次冥想 练习,或者出去做运动。

Task

• Input

- \circ question S₀ (question sentences)
- description S_{D} (description sentences)
- keyword set K (composed by at most 4 keywords)
- Output
 - a long counseling text consisting of multiple sentences that could give helpful comforts and advice mimicking a mental health counselor

Model Pretraining

• Data

50K articles related to psychology and mental health support from Yixinli

• Model

• GPT-2 (Generative Pre-Training)

GPT-2 generate

Question:

遇到困难,如何让自己的心志变得更加坚强? (How to be stronger when encountering difficulties?)

Description:

当面临一些困难的时候心志不够坚定的人会感到慌乱,那么如何在还没有遇见困难之前让自己变得更加坚强?

When faced with some difficulties, people who are not determined enough will feel panic. How to make ourselves stronger before we meet some difficulties?

Keywords:

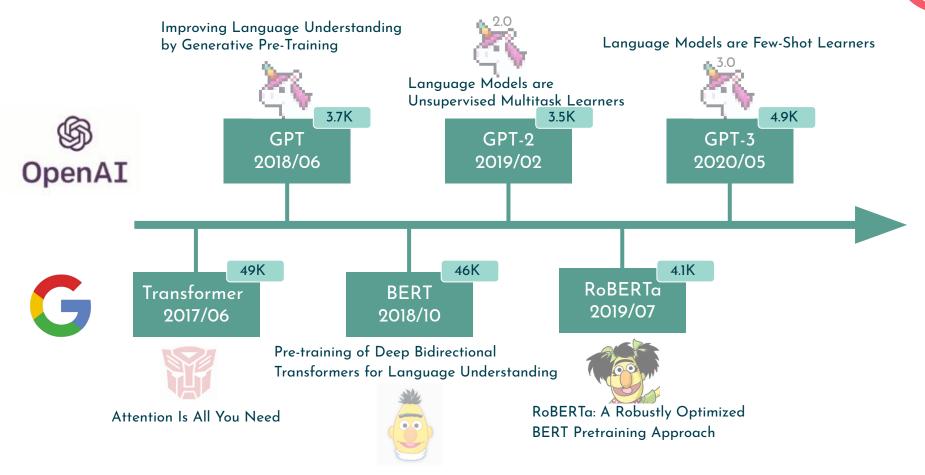
成长,性格完善,自我成长 (self-growth, personality improvement, self-development)

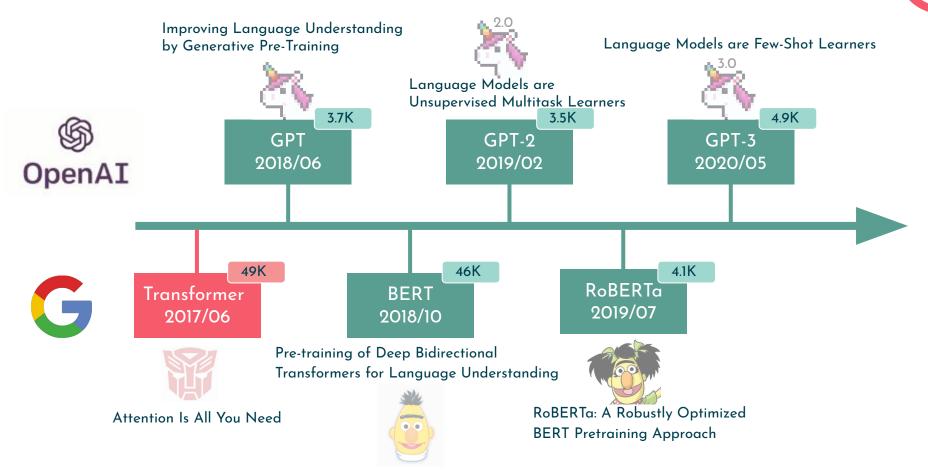
GPT_{ft}+Strategy

要坚持下去,只有这样才可能真正成为你坚持下去的动力。因为我们的目标很多是希望自己能够变得越来越优秀, 能够在这一点上给自己带来很大的动力。比如我们在遇到困难的时候,也会努力想要去克服困难,但是很多时候我 们会觉得要克服困难并不容易,因为我们并不完美,我们没有办法去付出相应的努力。如果你总是很害怕面对那些 困难,那么就需要去克服困难。这一次是我的经验,希望对你有所帮助。当面临困难的时候,可以先先告诉自己这 件事情是我能够克服的,我可以变得更好。但是我要告诉自己我可以去克服的。在面对困难的时候我们更需要去克 服那些困难。但是我们要相信我们不会是不可控的。当自己在面对困难的时候,有能力去应对困难的时候,那么就 能够更加的坚持下去。加油!

Models

..... /

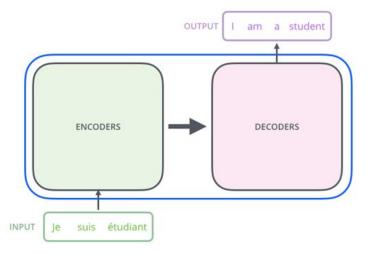




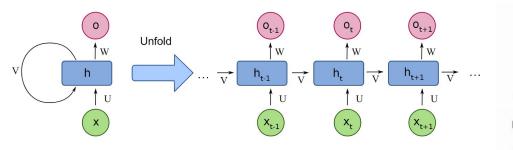
• Attention Is All You Need (Times Cited 49340)

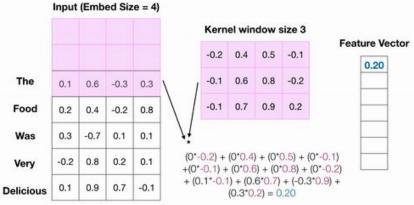
<u>https://arxiv.org/pdf/1706.03762.pdf</u>

- Propose a new seq2seq model with multi-headed self-attention
- Apply to <u>machine translation</u> and other tasks



🐨 RNN-based





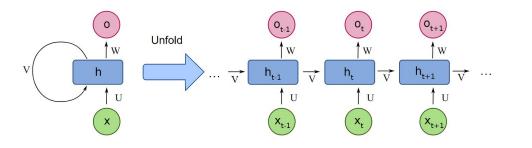
• Disadvantages

- hard to parallel
- historical information loss

Disadvantages

 Requires many layers to read longer sentences

🐨 RNN-based



• Disadvantages

- hard to parallel
- historical information loss

RNN https://medium.com/deeplearningbrasilia/deep-learning-recurrent-neural-networks-f9482a24d010 CNN https://chiranthancv95.medium.com/convolutional-sequence-to-sequence-learning-in-nlp-8ec25072de19

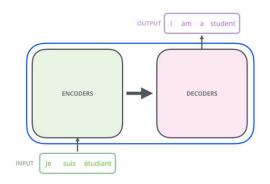
CNN-based

• Disadvantages

• Requires many layers to read longer sentences

RNN https://medium.com/deeplearningbrasilia/deep-learning-recurrent-neural-networks-f9482a24d010 CNN https://chiranthancv95.medium.com/convolutional-sequence-to-sequence-learning-in-nlp-8ec25072de19

- Sequence transduction model based entirely on attention
- low complexity
- Parallelization
- High quality of translation after being trained for a little time

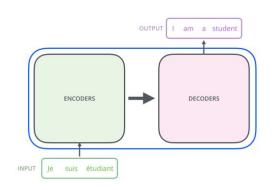


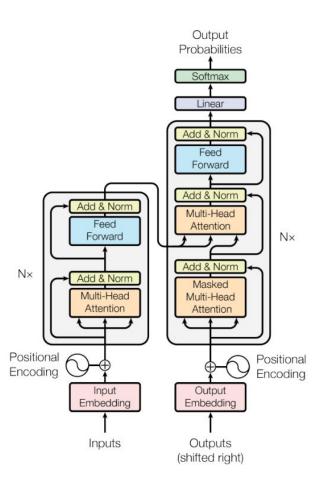
Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

(additional Info.) Sequence Transduction

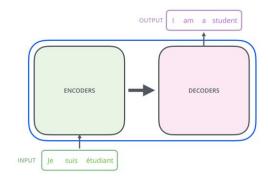
- Any task where input sequences are transformed into output sequences
- Practical example
 - speech recognition, text-to-speech, machine translation, protein secondary structure prediction...
- Not so practical
 - Turing machines, human intelligence...
- Want a single framework able to handle as many kinds of sequence as possible

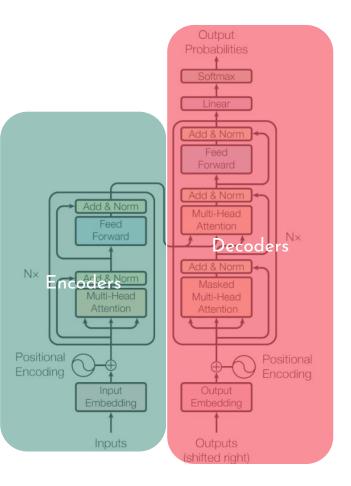
- Encoder Input
- Decoder Output





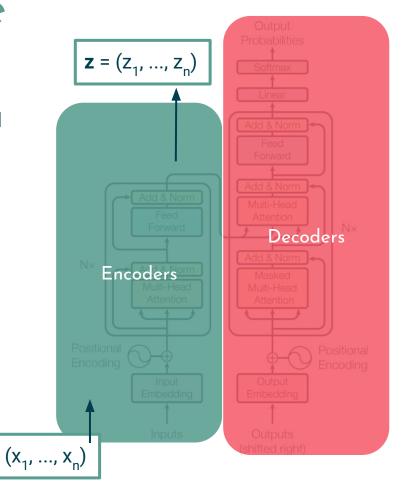
- Encoder Input
- Decoder Output



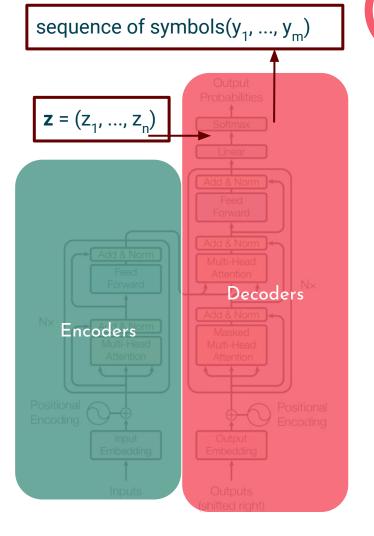


• Encoder Input

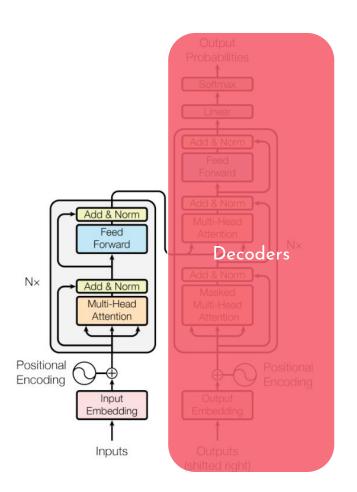
- maps an input sequence of symbol representations(x₁, ..., x_n) to a sequence of continuous representations z = (z₁, ..., z_n)
- Decoder Output



- Encoder Input
- Decoder Output
 - generates an output sequence of symbols (y₁, ..., y_m) one element at a time



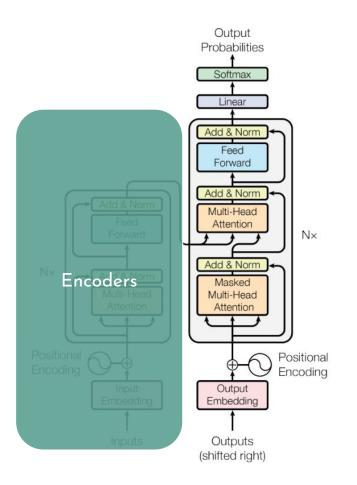
- layer N
- Sub-layers
 - Multi-Head Attention
 - Feed Forward
- output of each sub-layer
 - LayerNorm(x + Sublayer(x))
- Positional Encoding



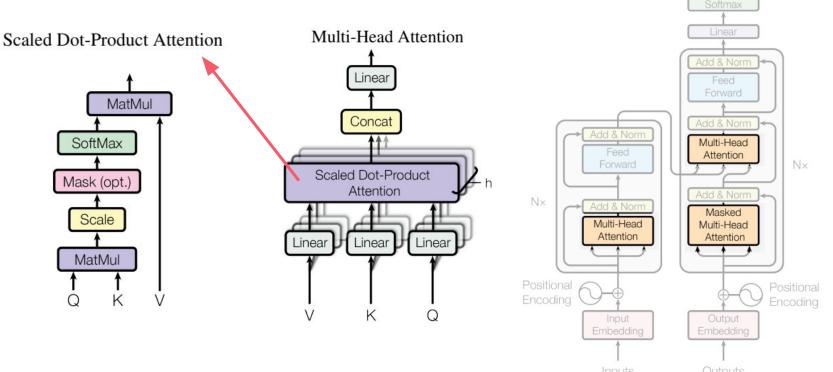
• layer N

• Sub-layers

- Multi-Head Attention
- Feed Forward
- Masked Multi-Head Attention
- output of each sub-layer
 - LayerNorm(x + Sublayer(x))
- Positional Encoding
- Linear
- Softmax



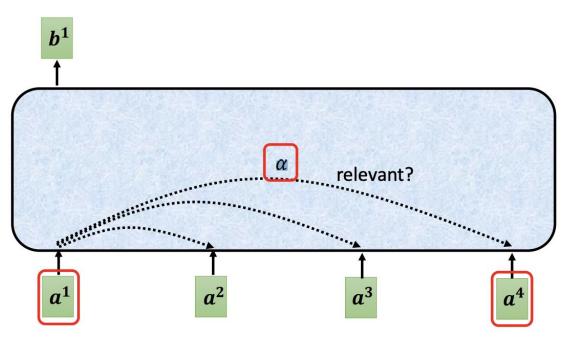
Wulti-Head Attention

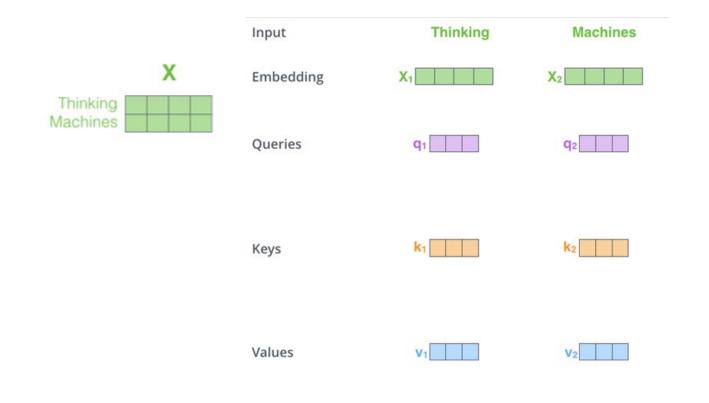


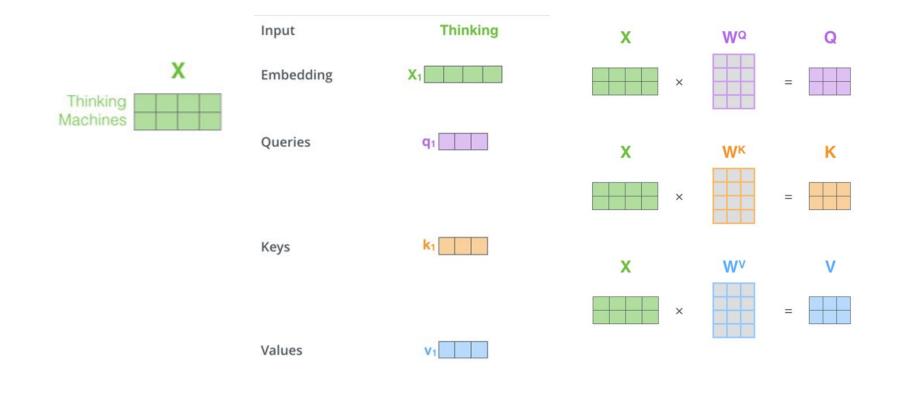
Outputs

Self-attention

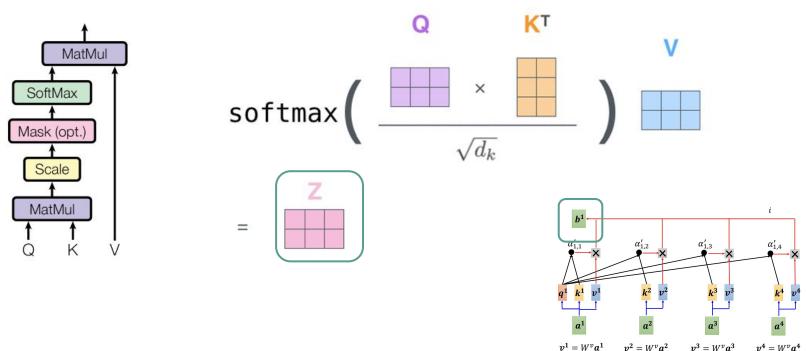
• Consider the whole sequence

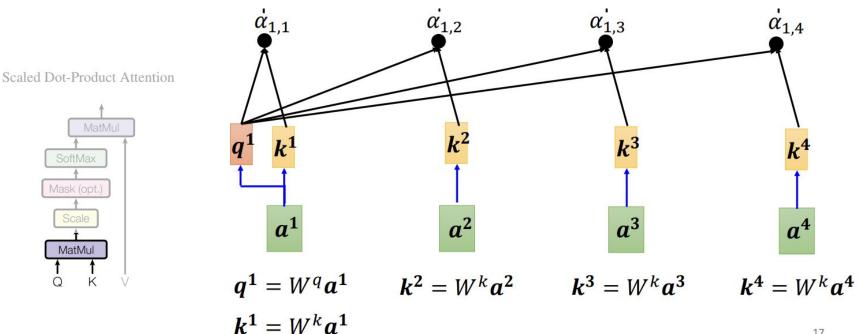






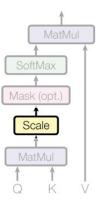
Scaled Dot-Product Attention





Scaled Dot-Product Attention

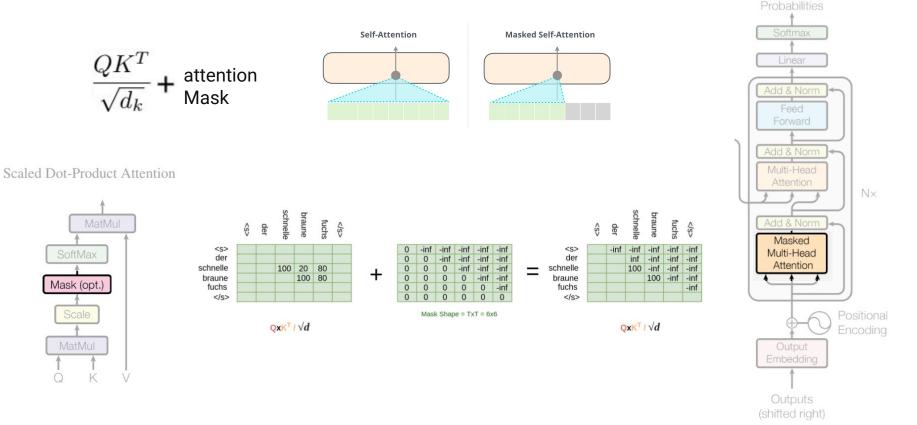
Scaled Dot-Product Attention



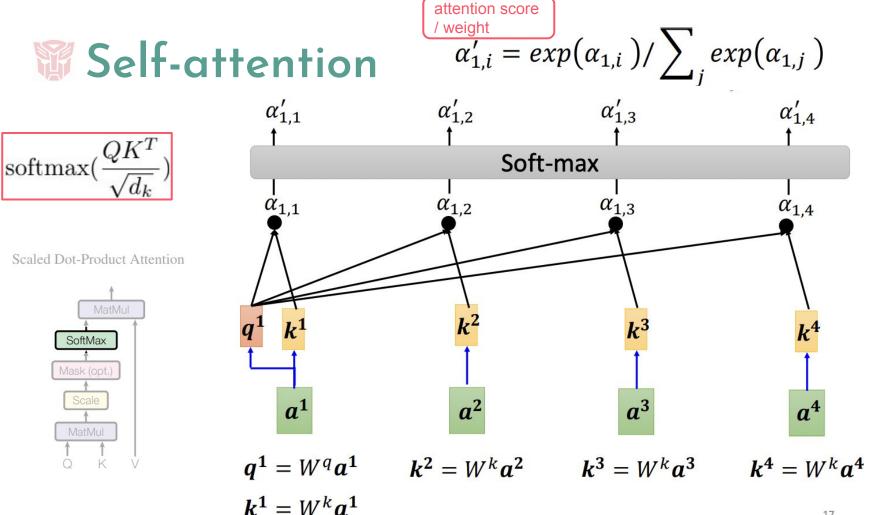
Problem

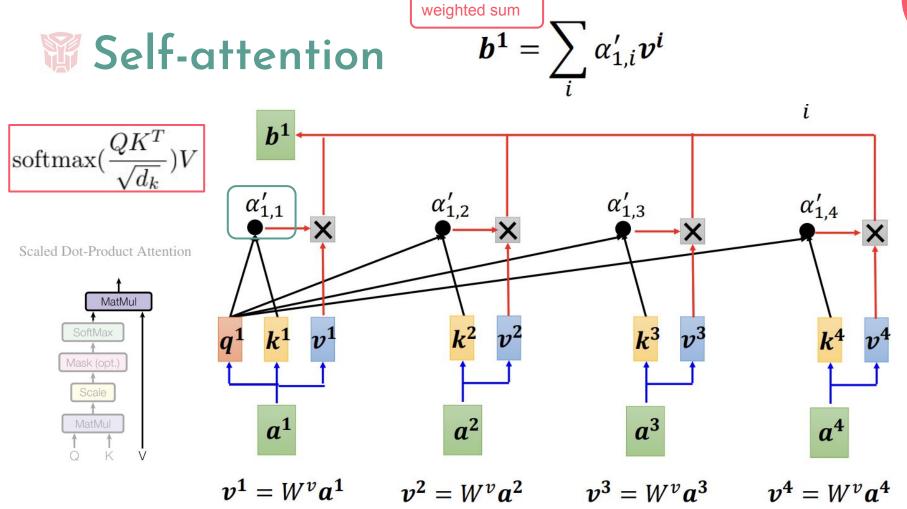
- large values of d_k , the dot products grow large in magnitude
- queries and keys = d_k
- values = d_v
- $d_k = d_v$
- Solution
 - scale the dot products by $\frac{1}{\sqrt{d_k}}$

Masked self-attention

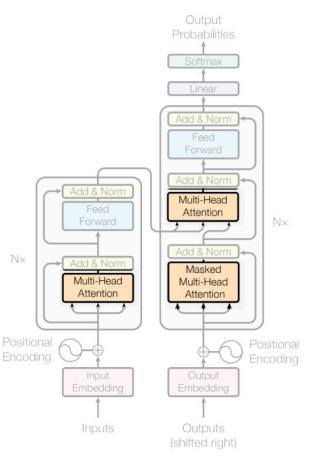


https://towardsdatascience.com/understanding-transformers-the-data-science-way-e4670a4ee076 https://jalammar.github.io/images/gpt2/self-attention-and-masked-self-attention.png

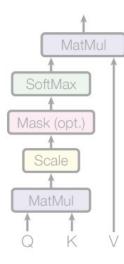


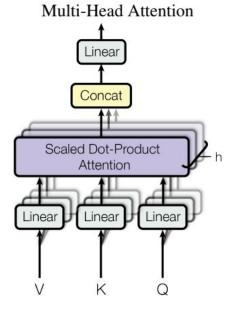


Wulti-head Attention

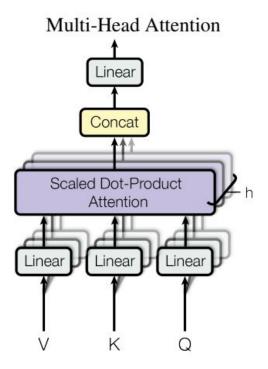


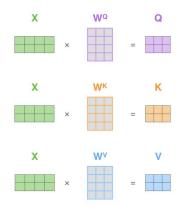
Scaled Dot-Product Attention





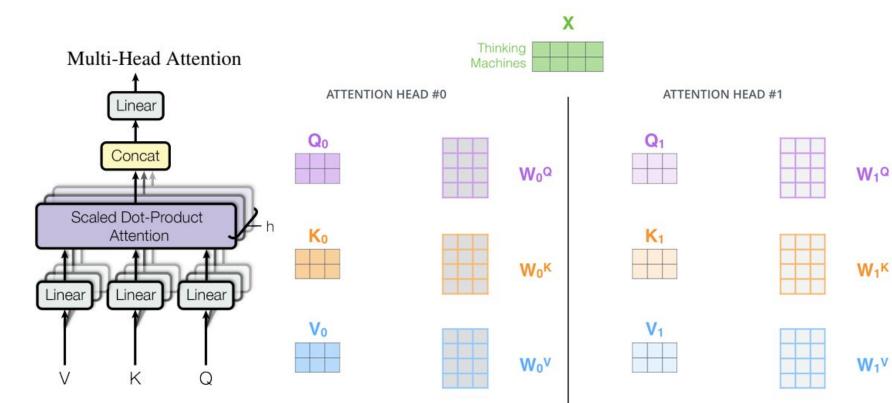
Wulti-head Attention





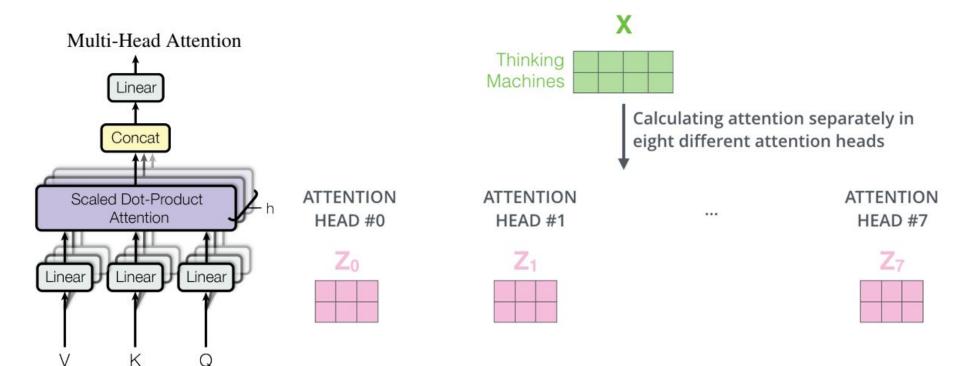
 $MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$ where head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)

$$W_i^Q \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^K \in \mathbb{R}^{d_{\text{model}} \times d_k}, W_i^V \in \mathbb{R}^{d_{\text{model}} \times d_v} \ W^O \in \mathbb{R}^{hd_v \times d_{\text{model}}}$$



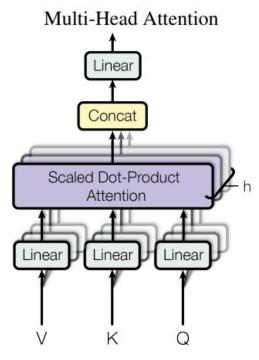
36

W Attention visualization



W Attention visualization

=



1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

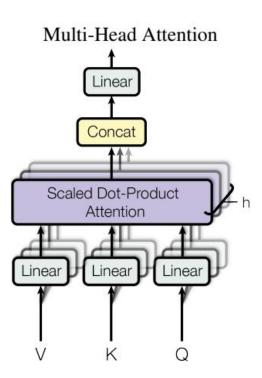
Х

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

W Attention visualization

Thinking

Machines



1) This is our 2) We embed input sentence* each word*

* In all encoders other than #0.

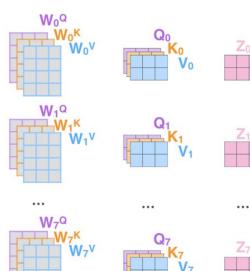
of the encoder right below this one

we don't need embedding. We start directly with the output 3) Split into 8 heads. We multiply X or R with weight matrices

4) Calculate attention using the resulting Q/K/V matrices

5) Concatenate the resulting $\mathbb Z$ matrices, then multiply with weight matrix W^0 to produce the output of the layer

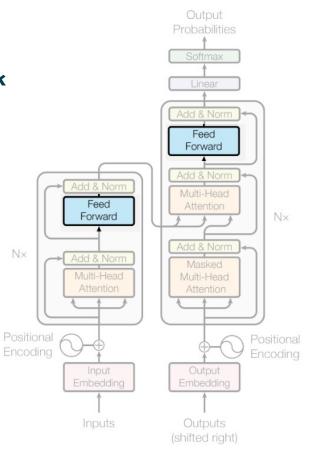
Wo



Z

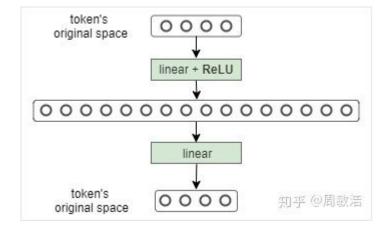
Feed Forward

• Fully connected feed-forward network



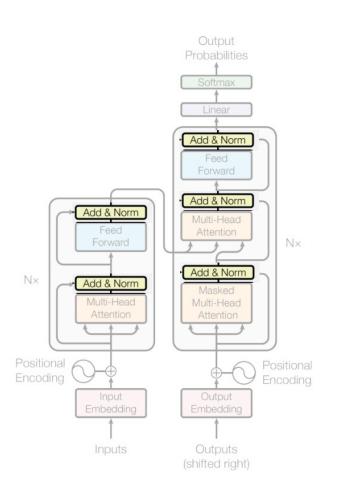
• To extract the required information

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

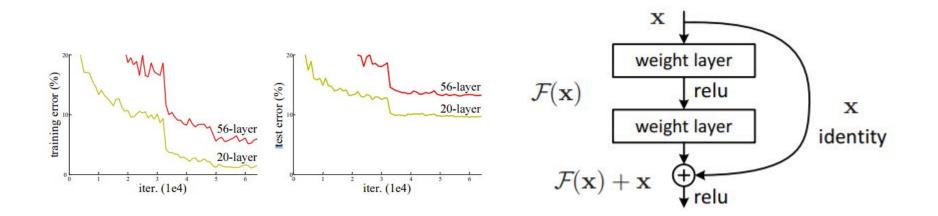


Add & Norm

- LayerNorm(x + Sublayer(x))
- Add
 - Residual Connection
 - o x + Sublayer(x)
- Norm
 - Layer Normaliztion

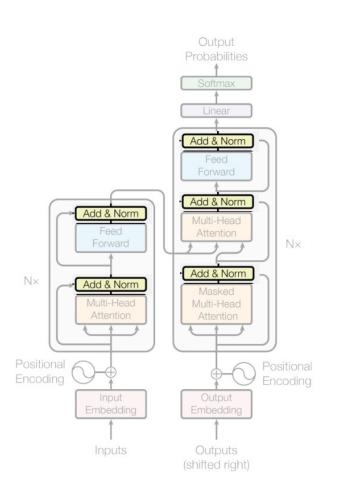


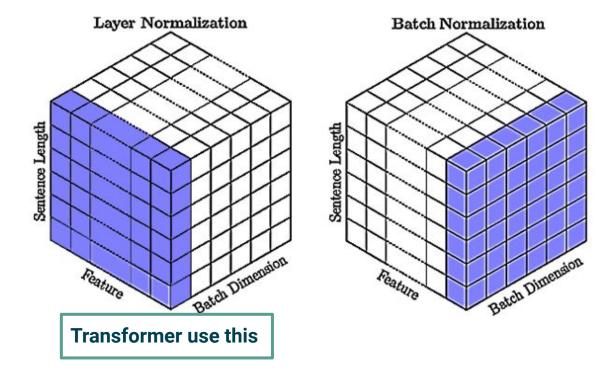
Degradation problem

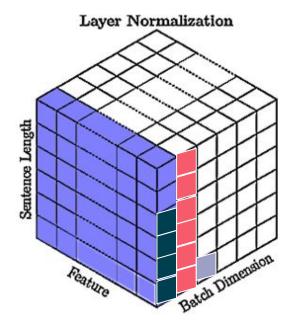


Add & Norm

- LayerNorm(x + Sublayer(x))
- Add
 - Residual Connection
 - x + Sublayer(x)
- Norm
 - Layer Normaliztion







- 1. This is a book
- 2. To be or not to be
- 3. Yummy

This	0.51	0.36
is	0.25	0.44
а	0.88	0.96
book	0.13	0.27
		x - avg(x)
x_{no}		$\sqrt{var(x)}$
		Vourta

То	0.31	0.18
be	0.45	0.44
or	0.78	0.15
not	0.13	0.72
to	0.31	0.18
be	0.45	0.44

47

1. This is a book

2. To be or not to be

0.36

0.44

0.96

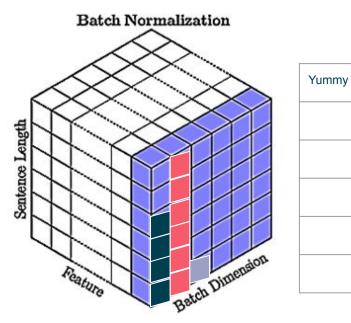
0.27

3. Yummy

0.11	This	0.51
	is	0.25
	а	0.88
	book	0.13

То	0.31	0.18
be	0.45	0.44
or	0.78	0.15
not	0.13	0.72
to	0.31	0.18
be	0.45	0.44

$$x_{norm} = rac{x - avg(x)}{\sqrt{var(x)}}$$

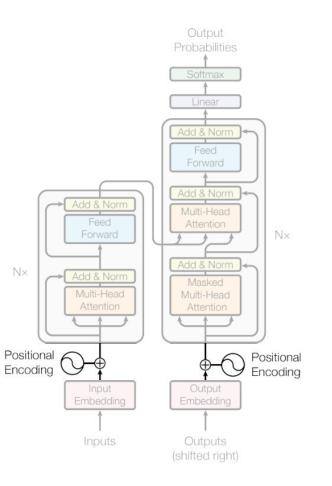


Batch Normaliztion

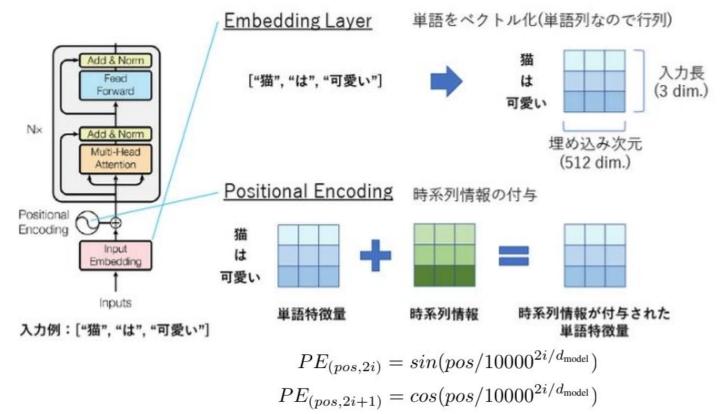
0.38

Positional Encoding

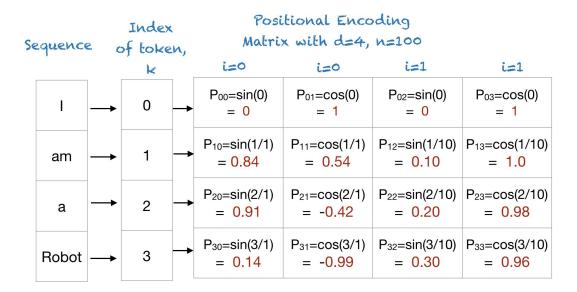
• Lack of positional information



Positional Encoding



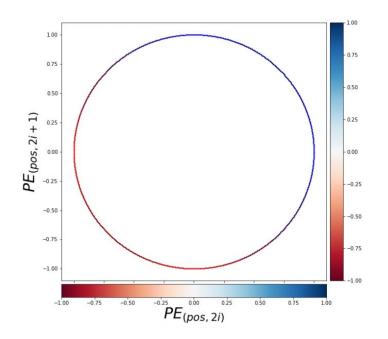
Positional Encoding



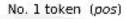
Positional Encoding Matrix for the sequence 'I am a robot'

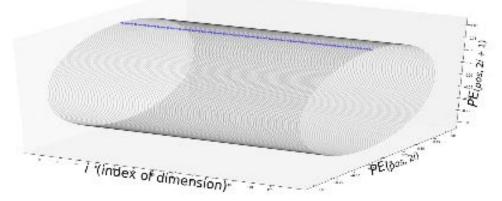
$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

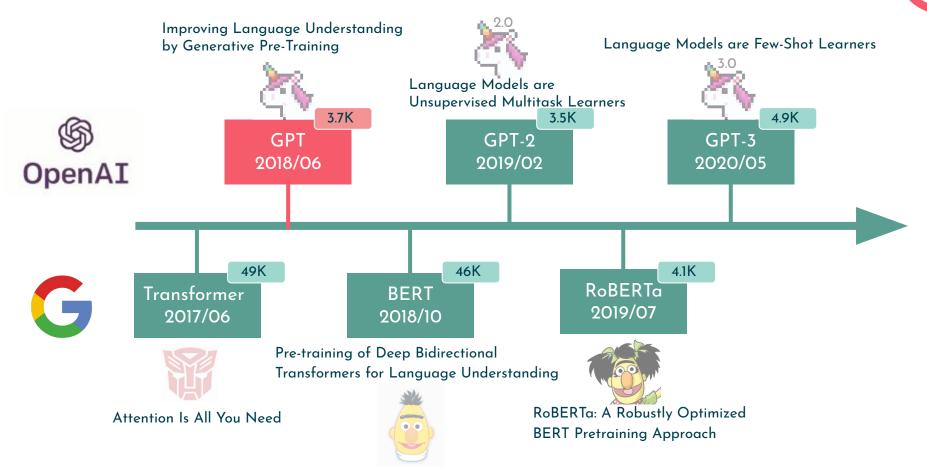
(additional Info.) Positional Emb. visualization



 $PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$ $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$







• GPT

- Improving Language Understanding by Generative Pre-Training
- <u>https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_underst</u> <u>anding_paper.pdf</u>

• GPT-2

- Language Models are Unsupervised Multitask Learners
- <u>https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_lea</u> <u>rners.pdf</u>
- GPT-3
 - Language Models are Few-Shot Learners
 - <u>https://arxiv.org/pdf/2005.14165.pdf</u>

• Problem

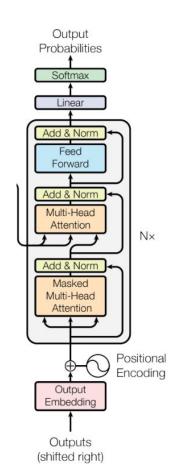
• Large unlabeled text corpora are abundant, <u>labeled data</u> for learning these specific tasks is scarce

Goal

- Realize <u>generative pre-training of a language model</u> on a diverse corpus of unlabeled text
- <u>Discriminative fine-tuning</u> on each specific task

• Approach

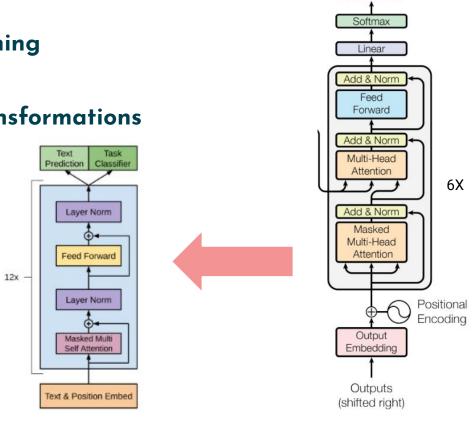
- Semi-supervised approach for language understanding tasks
 - unsupervised pre-training
 - supervised fine-tuning.
- Transformer decoder architecture



- 1. Unsupervised pre-training
- 2. Supervised fine-tuning
- 3. Task-specific input transformations

Training task

• predict next word



Output Probabilities

No. 1. Unsupervised pre-training

- Unsupervised corpus of tokens $\mathcal{U} = \{u_1, \ldots, u_n\}$
- Maximize the likelihood of L1(u)

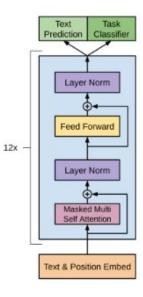
$$L_1(\mathcal{U}) = \sum_{i=1}^{n} \log P(u_i | u_{i-k}, \dots, u_{i-1}; \Theta)$$

 $\mathbf{k}: \mathbf{context} \ \mathbf{window} \ \mathbf{size}$

🐴 1. Unsupervised pre-training

- Context vector of tokens $U = (u-k, \ldots, u-l)$
- Number of layers *n*
- Token embedding matrix We
- Position embedding matrix *Wp*

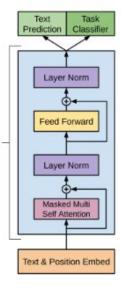
 $\begin{aligned} h_0 &= UW_e + W_p \\ h_l &= \texttt{transformer_block}(h_{l-1}) \forall i \in [1, n] \\ P(u) &= \texttt{softmax}(h_n W_e^T) \end{aligned}$



No. 2. Supervised fine-tuning

- Adapt the parameters to the supervised <u>target task</u>
- **Final** transformer block's activation h_{l}^{m}
- Parameters Wy
- Sequence of input tokens x^1, \ldots, x^m
- Label y

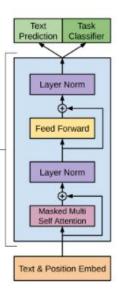
$$P(y|x^1,\ldots,x^m) = \texttt{softmax}(h_l^m W_y)$$



2. Supervised fine-tuning

• Maximize the likelihood of $L_2(C)$

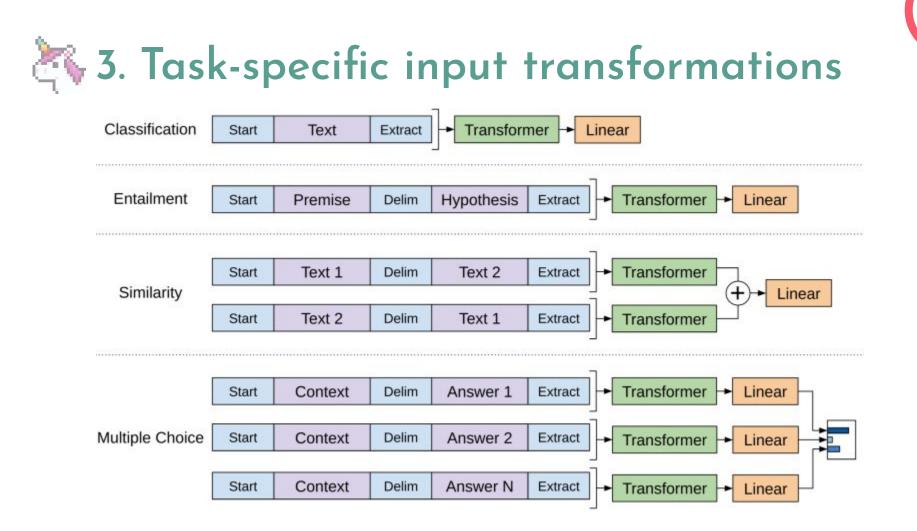
$$L_2(\mathcal{C}) = \sum_{(x,y)} \log P(y|x^1, \dots, x^m)$$



2. Supervised fine-tuning

- **Optimize** $L_3(C)$
- Weight λ

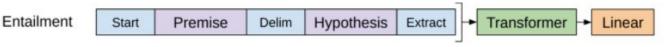
$$L_3(\mathcal{C}) = L_2(\mathcal{C}) + \lambda * L_1(\mathcal{C})$$



• Fine-tune model as described in Supervised fine-tuning

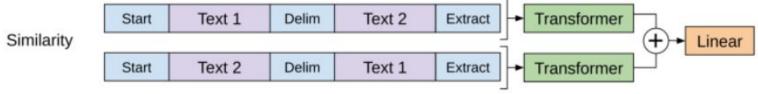
• Premise *p* and hypothesis *h* token sequences, with a delimiter token (\$) in between

Premise	Label	Hypothesis
A man inspects the uniform of a figure in some East Asian country.	contradictio	n The man is sleeping.
An older and younger man smiling.	neutral	Two men are smiling and laughing at the cats playing on the floor.
A soccer game with multiple males playing.	entailment	Some men are playing a sport.



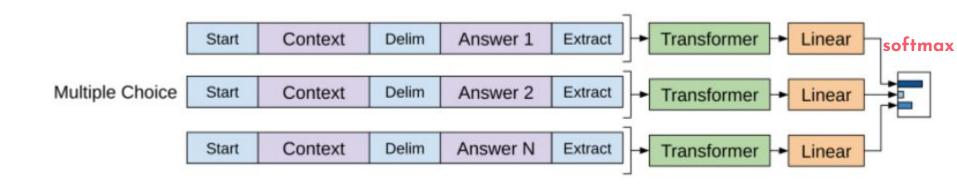
- No inherent ordering of the two sentences
- Independently to produce two sequence representations $h^m_{\ l}$
- Add two $h^m_{\ l}$ element-wise

	sent_1	sent_2
0	A girl is styling her hair.	A girl is brushing her hair.
1	A group of men play soccer on the beach.	A group of boys are playing soccer on the beach.
2	One woman is measuring another woman's ankle.	A woman measures another woman's ankle.
3	A man is cutting up a cucumber.	A man is slicing a cucumber.
4	A man is playing a harp.	A man is playing a keyboard.



Question Answering & Commonsense Reasoning

- [z; q; \$; ak]
 - Context document z
 - Question q
 - Set of possible answers {*ak*}
- Sequences are processed independently
- Output a distribution over possible answers



PsyQA:Question

• Chinese dataset of Psychological health support in the form of Question-Answer pair

Question (Post Title)

为什么有些事情越想心越闷? The more I think about some things, the more upset I feel. Why?

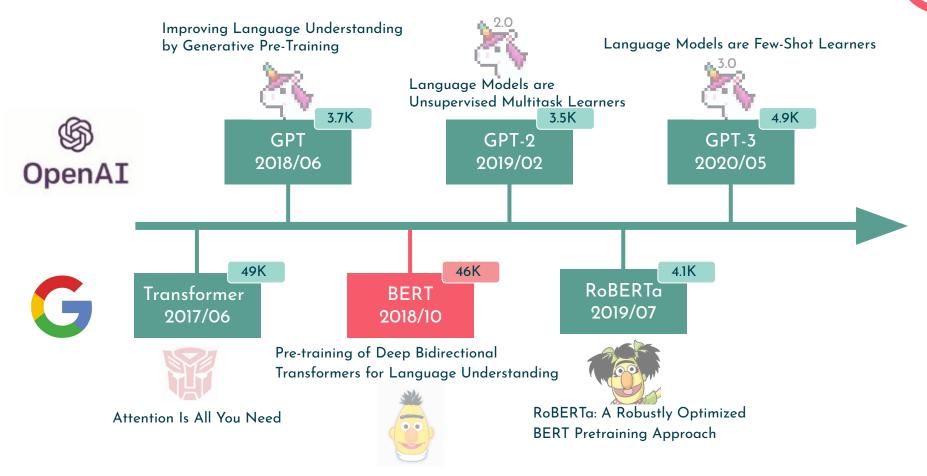
Description (Post Content)

比如家里人说我和别人相亲的事,我是不太主动比较被动的人……又怪自己,又恨别人到处说,搞得心里很难受很郁闷,这该怎么办? For example, my family asked me to go on a blind date with others. I am not an active but passive person. ... I blame myself and blame others for speaking ill of me everywhere, making me very uncomfortable and depressed. What should I do?

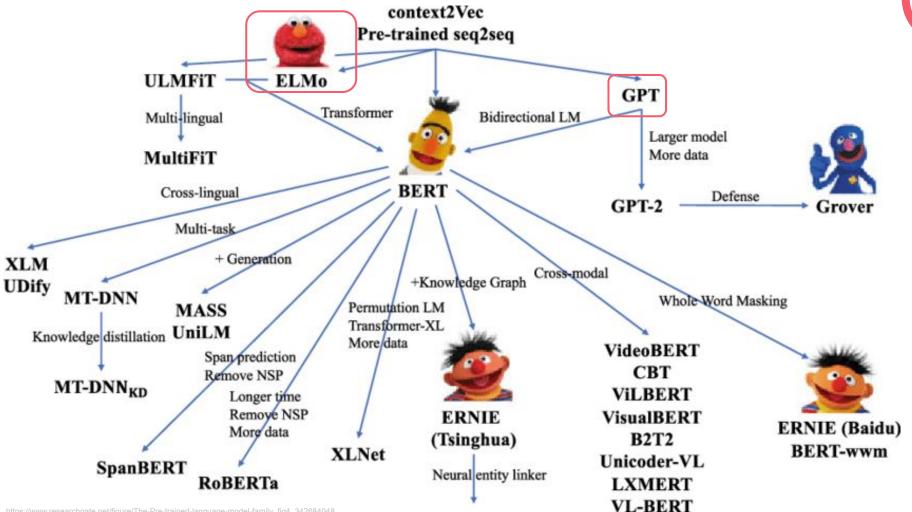
Keywords

情绪 表达情绪 情绪调节 情绪智力 Emotion, Emotion Expression, Emotion Regulation, EQ 你好呀~事情越想越闷可能是陷入了反刍思维 中。反刍式思考是指 …… 反刍思维作为一种认 知,对情绪也有重要的影响。在这种情况下, 你首先要冷静下来 ……比如自己闷在家里没出 去相亲,家人就说自己是不是想打光棍儿。其 实你仔细看这两件事情并没有因果关系。…… 但这样的逻辑也是不太合情理的。当然,在这 种情况下,你也可以使用转移注意力的方式, 让自己的情绪稍微平复下来。比如做一次冥想 练习,或者出去做运动。

Hi ~ The more you think about it, the more depressed you feel. This is maybe because you are trapped in ruminant thinking. Ruminant thinking means that Ruminant thinking, as a form of cognition, also has an important effect on emotion. In this case, you need to calm down first... For example, you stayed at home and didn't go out for a blind date, and your family said that you just wanted to be single. When you look at it carefully, there is no causal relationship between the two events. But this logic doesn't work. Of course, in this case, you can also distract your attention to calm yourself down a bit. Take a meditation practice, or go outside to exercise.



- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
 - https://arxiv.org/pdf/1810.04805.pdf

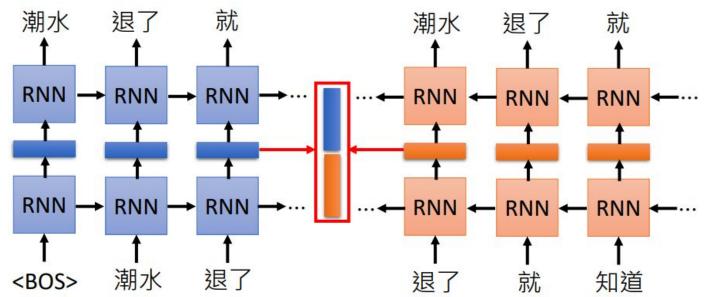


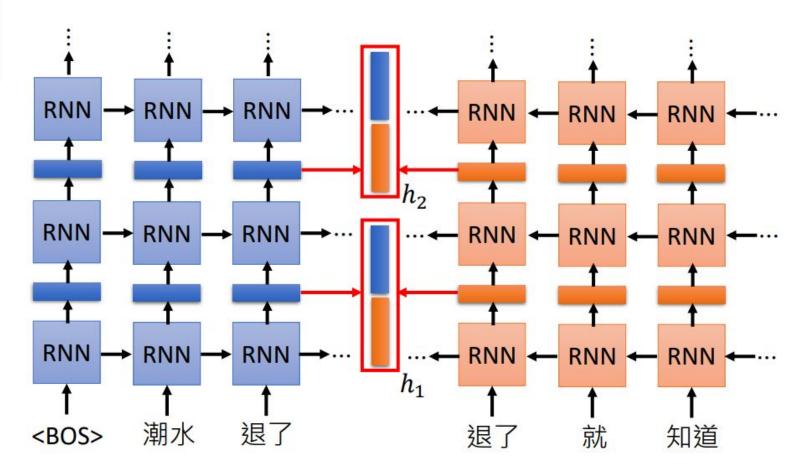
https://www.researchgate.net/figure/The-Rre-trained-language-model-family_fig4_342684048

69

Embeddings from Language Model (ELMO) https://arxiv.org/abs/1802.05365

RNN-based language models (trained from lots of sentences)
 e.g. given "潮水 退了 就 知道 誰 沒穿 褲子"





Problem

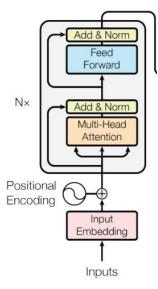
BERT

8

- Standard LM are <u>unidirectional</u>, missing context from both directions
- RNN-based models hard to parallel
- Goal
 - Improve the fine-tuning based approaches(e.g. GPT)

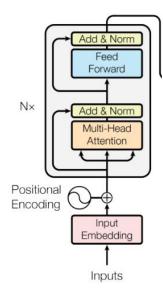
• Approach

- Semi-supervised
 - unsupervised pre-training
 - supervised fine-tuning
- Transformer encoder architecture



Model Architecture

- Multi-layer bidirectional Transformer encoder
- BERT_{BASE}
 - L=12, H=768, A=12, Total Parameters=110M
- BERT_{LARGE}
 - L=24, H=1024, A=16, Total Parameters=340M

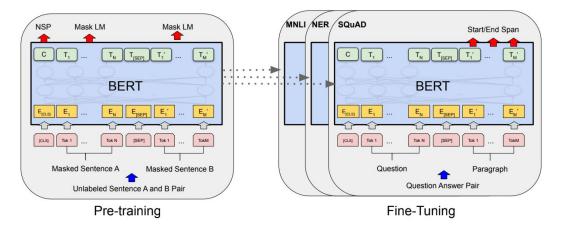


I. Unsupervised Pre-Training

a. Model is trained on unlabeled data over different pre-training tasks

2. Supervised Fine-Tuning

- a. Initialized with the pre-trained parameters
- All of the parameters are fine-tuned using labeled data from the downstream tasks

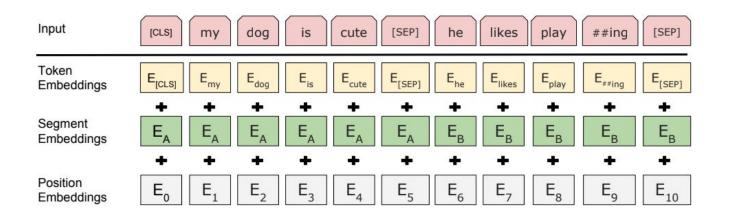


• Sequence

- single sentence
- \circ a pair of sentences(e.g. (Question, Answeri))

• Special token

- [CLS] Classification token at the first of every sequence
- [SEP] Separate token to separate sentence A and sentence B

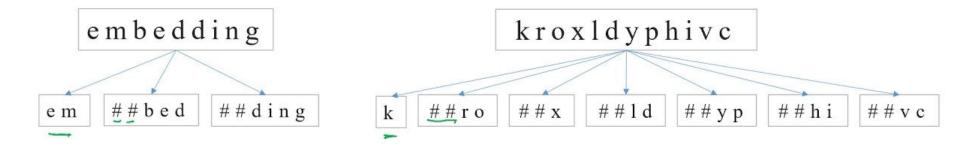


• Sum token, segment, position embeddings

- Token Embedding
 - WordPiece embeddings with a 30,000 token vocabulary
- Segment Embedding
 - Learned embeddings belong to sentence A or sentence B
- Position Embedding
 - Learned positional embedding

Input	[CLS] my dog is cute [SEP] he likes play ##ing [SEP]	
Token Embeddings	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Segment Embeddings	$\begin{array}{cccccccccccccccccccccccccccccccccccc$]
Position Embeddings		

All subwords start with "##" ...

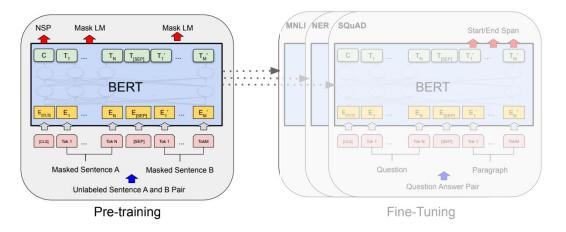


I. Unsupervised Pre-Training

a. Model is trained on unlabeled data over different pre-training tasks

2. Supervised Fine-Tuning

- a. Initialized with the pre-trained parameters
- b. All of the parameters are fine-tuned using labeled data from the downstream tasks



ਠ 1. Unsupervised Pre-Training

- Corpus
 - BooksCorpus, English Wikipedia
- Task #1: Masked LM (MLM)
- Task #2: Next sentence prediction (NSP)

#1 Masked Language Models (MLM)

- Train a deep bidirectional representation
- Mask 15% of all WordPiece tokens in each sequence at random for prediction
- [MASK] token does not appear during fine-tuning
 - \circ Replace the token with
 - [MASK] token 80% of the time

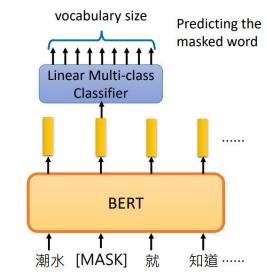
my dog is hairy \rightarrow my dog is [MASK]

a random token 10% of the time

my dog is hairy \rightarrow my dog is apple

the unchanged i-th token 10% of the time

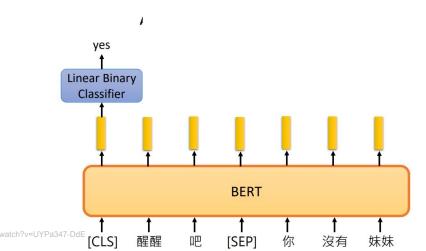
my dog is hairy \rightarrow my dog is hairy

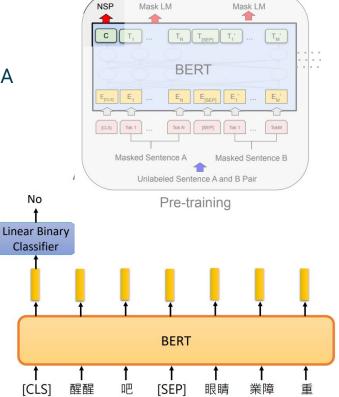


•••

#2 Next sentence prediction(NSP)

- Understands sentence relationships
- 50% of the time IsNext
 - \circ $\hfill B$ is the actual next sentence that follows A
- 50% of the time NotNext
 - \circ $\,$ a random sentence from the corpus



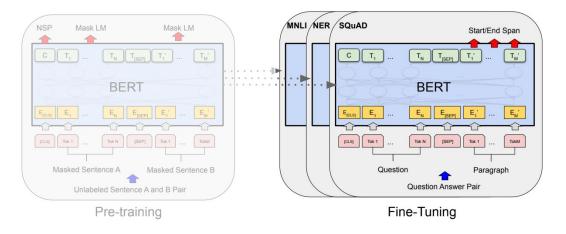


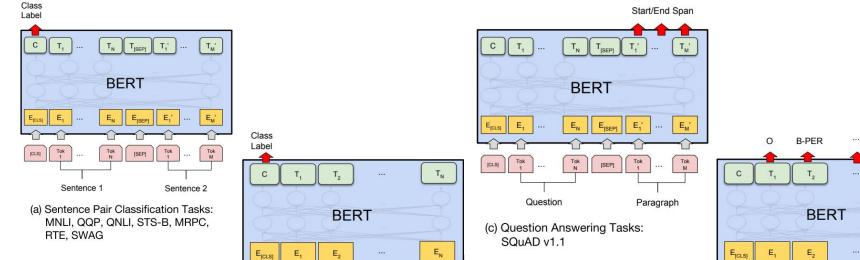
1. Unsupervised Pre-Training

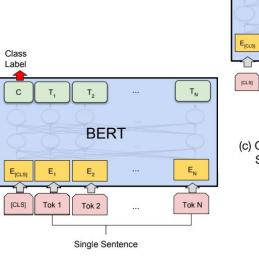
a. Model is trained on unlabeled data over different pre-training tasks

2. Supervised Fine-Tuning

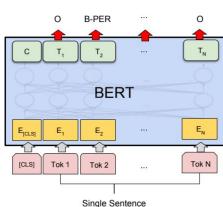
- a. Initialized with the pre-trained parameters
- All of the parameters are fine-tuned using labeled data from the downstream tasks





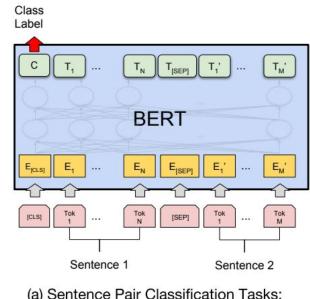


(b) Single Sentence Classification Tasks: SST-2, CoLA



(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

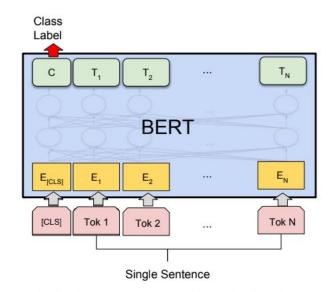
- Input
 - two sentences
- Output
 - \circ class
- Example
 - Natural Language Inference



(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b)Single Sentence Classification Tasks

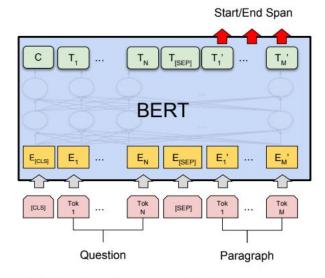
- Input
 - single sentence
- Output
 - \circ class
- Example
 - Sentiment analysis
 - Document Classification



(b) Single Sentence Classification Tasks: SST-2, CoLA

(c)Question Answering Tasks

- Input
 - two sentences
- Output
 - two integers (s, e)
- Example
 - QA



(c) Question Answering Tasks: SQuAD v1.1

In meteorology, precipitation is any product of the condensation of 17 spheric water vapor that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain 77 atte 79 cations are called "showers".

What causes precipitation to fall?

s = 17, e = 17

What is another main form of precipitation besides drizzle, rain, snow, sleet and hail? graupel

Where do water droplets collide with ice crystals to form precipitation?

within a cloud s = 77, e = 79

Document: $D = \{d_1, d_2, \cdots, d_N\}$ **Query**: $Q = \{q_1, q_2, \cdots, q_N\}$

$$\begin{array}{ccc} D \rightarrow & & \\ Q \rightarrow & & \\ Q \rightarrow & & \\ Model \rightarrow & e \end{array}$$

output: two integers (s, e)

Answer: $A = \{q_s, \cdots, q_e\}$

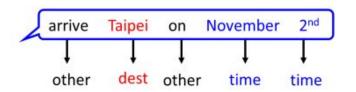
 $\begin{array}{c} C \\ T_{1} \\ \cdots \\ T_{N} \\ T_{[SEP]} \\ T_{1}' \\ \cdots \\ T_{N}' \\ \end{array}$ $\begin{array}{c} BERT \\ F_{[CLS]} \\ E_{1} \\ \cdots \\ T_{N} \\ F_{[SEP]} \\ T_{1}' \\ \cdots \\ T_{N}' \\ T_$

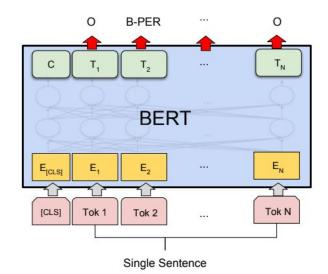
(c) Question Answering Tasks: SQuAD v1.1

Start/End Span

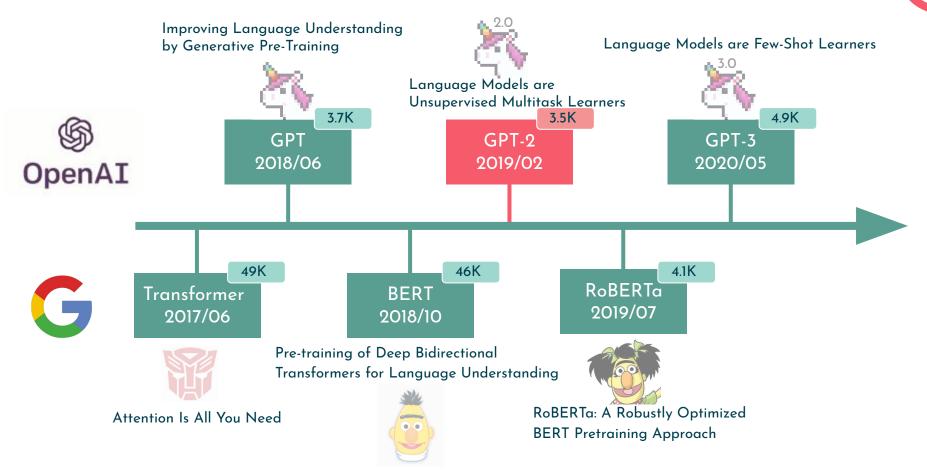
(d)Single Sentence Tagging Tasks

- Input
 - \circ single sentence
- Output
 - \circ class of each word
- Example
 - Slot filling





(d) Single Sentence Tagging Tasks: CoNLL-2003 NER



- GLUE
 - A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding

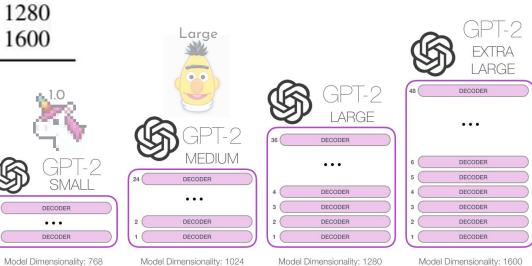
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
155.94	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Corpus	Train	Test	Task	Metrics	Domain
			Single-S	entence Tasks	
CoLA	8.5k	1k	acceptability	Matthews corr.	misc.
SST-2	67k	1.8k	sentiment	acc.	movie reviews
			Similarity and	d Paraphrase Tasks	
MRPC	3.7k	1.7k	paraphrase	acc./F1	news
STS-B	7k	1.4k	sentence similarity	Pearson/Spearman corr.	misc.
QQP	364k	391k	paraphrase	acc./F1	social QA questions
			Infere	ence Tasks	
MNLI	393k	20k	NLI	matched acc./mismatched acc.	misc.
QNLI	105k	5.4k	QA/NLI	acc.	Wikipedia
RTE	2.5k	3k	NLI	acc.	news, Wikipedia
WNLI	634	146	coreference/NLI	acc.	fiction books

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test sets shown in bold use labels that have never been made public in any form.

- Training on a million dataset, WebText
 - 40 GB of text
- More parameters and layers than ever
- Perform down-stream tasks in a zero-shot setting, without any parameter or archi-tecture modification
 - Reading Comprehension
 - \circ Summarization
 - Translation

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600



Zero-shot results on many datasets

	LAMBADA	LAMBADA	CBT-CN	CBT-NE	WikiText2	PTB	enwik8	text8	WikiText103	1BW
	(PPL)	(ACC)	(ACC)	(ACC)	(PPL)	(PPL)	(BPB)	(BPC)	(PPL)	(PPL)
SOTA	99.8	59.23	85.7	82.3	39.14	46.54	0.99	1.08	18.3	21.8
117M	35.13	45.99	87.65	83.4	29.41	65.85	1.16	1.17	37.50	75.20
345M	15.60	55.48	92.35	87.1	22.76	47.33	1.01	1.06	26.37	55.72
762M	10.87	60.12	93.45	88.0	19.93	40.31	0.97	1.02	22.05	44.575
1542M	8.63	63.24	93.30	89.05	18.34	35.76	0.93	0.98	17.48	42.16

SOTA state-of-the-art

- Evaluation of models for sequence labelling.
 - Penn Treebank (PTB)
- Measure long-term dependencies
 - LAMBADA
 - <u>WikiText-2</u>
 - <u>WikiText-103</u>
- Measure how well language models can exploit wider linguistic

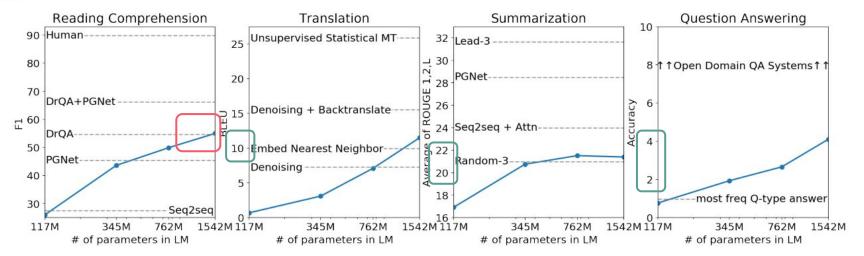
context

- 0 <u>CBT</u>
- NE answers to the questions are named entities
- CN answers to the questions are common nouns
- Measure the model's ability to compress data
 - enWik8
 - Text8

Measuring progress in statistical language modeling

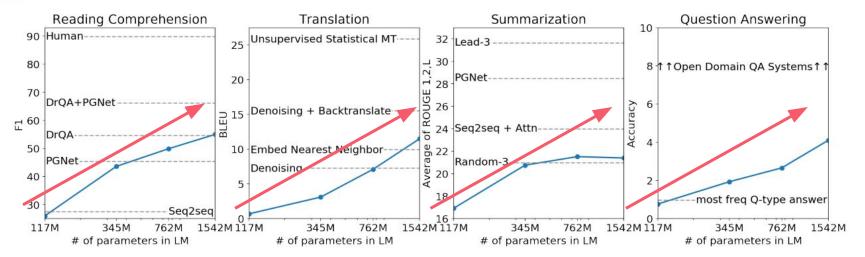
• **1BW**

🖏 Zero-shot task performance on NLP tasks

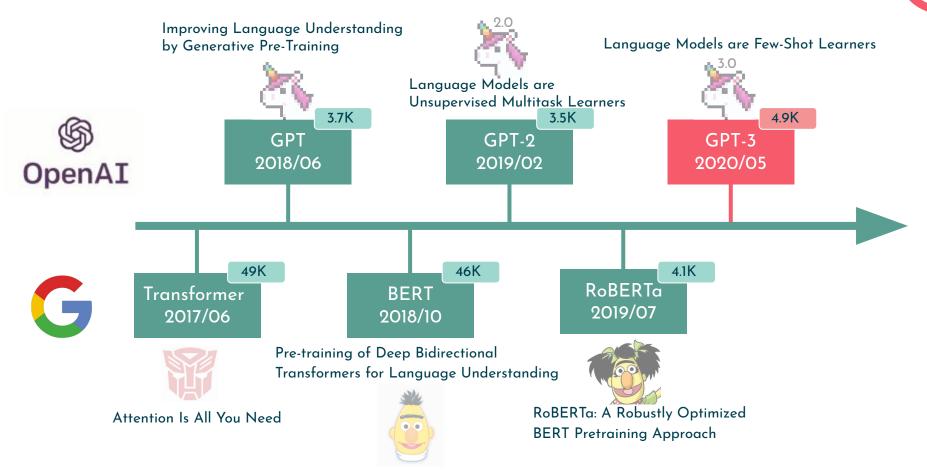


- Reading Comprehension
 - \circ *d*1, *d*2, ··· , *dN*, "Q:", *q*1, *q*2, ··· , *qN*, "A:"
- Summarization
 - *d*1, *d*2, ··· , *dN*,"TL;DR:"
- Translation
 - English sentence 1 = French sentence 1
 - English sentence 2 = French sentence 2
 - English sentence 3 = ?

🖏 Zero-shot task performance on NLP tasks

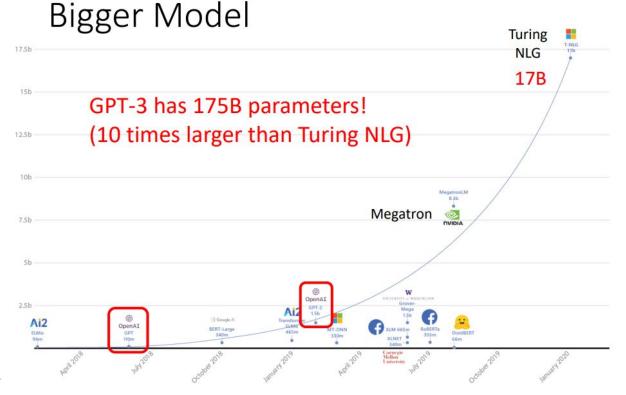


- Reading Comprehension
 - \circ *d*1, *d*2, ··· , *dN*, "Q:", *q*1, *q*2, ··· , *qN*, "A:"
- Summarization
 - *d*1, *d*2, ··· , *dN*,"TL;DR:"
- Translation
 - English sentence 1 = French sentence 1
 - English sentence 2 = French sentence 2
 - English sentence 3 = ?



- 175 billion parameters
- Applied without any gradient updates or fine-tuning
- In-context learning

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/



Model Name	$n_{\rm params}$	$n_{\rm layers}$	d_{model}	$n_{\rm heads}$	$d_{\rm head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes 10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes 10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	1M	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	1M	$1.6 imes 10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	2M	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

- 175 billion parameters
- Applied without any gradient updates or fine-tuning

• In-context learning

- Using the text input of a pretrained language model as a form of task specification
 - the model is conditioned on a <u>natural language instruction</u> and/or a few demonstrations of the task
 - and is then expected to complete further instances of the task simply by predicting what comes next

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

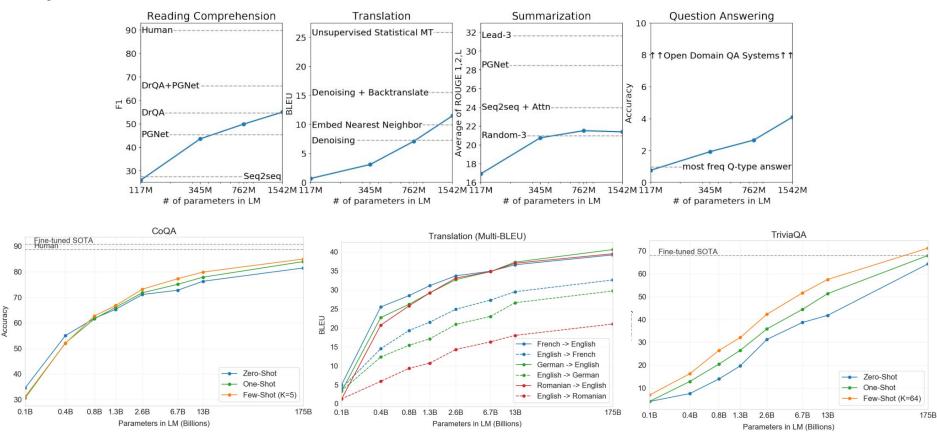
Common Crawl dataset

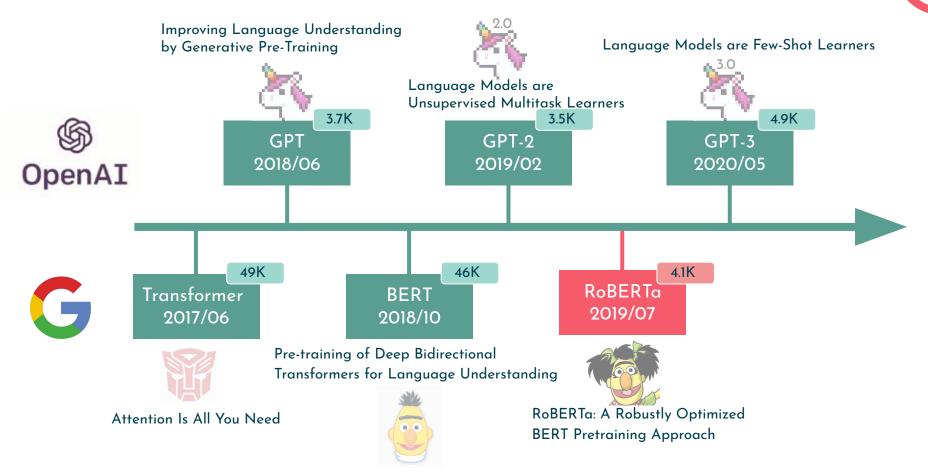
- a. constituting nearly a trillion words.
- b. low-quality

Data clean

- a. Filtered a version of CommonCrawl based on similarity to a range of high-quality reference corpora(WebText)
- b. Deduplication at the document level
- c. Added known high-quality reference corpora

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4





RoBERTa: A Robustly Optimized BERT Pretraining Approach

• https://arxiv.org/pdf/1907.11692.pdf

• Problem

• BERT was significantly undertrained

• Modifications

- Training the model longer, with bigger batches, over more data
- Training on longer sequences
- Removing the next sentence prediction(NSP) objective
- Dynamically changing the masking pattern applied to the training data

• Large new dataset (CC-NEWS)

• Comparable size to other privately used datasets, to better control for training set size effects

- Training the model longer, with bigger batches, over more data
 - BPE vocabulary of size =50K (Wordpiece size =30K)
 - minibatches containing B=8K (B = 256)
 - CC-NEWS(160GB) (16GB)
- 2. Training on longer sequences
 - sequences of maximum length T=512 tokens (\leq 512 tokens)

3. Removing the next sentence prediction(NSP) objective

- FULL-SENTENCES
 - Each input is packed with full sentences sampled contiguously from one or more documents
 - Total length is at most 512 tokens
- DOC-SENTENCES
 - May not cross document boundaries
 - May be shorter than 512 tokens

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementation	on (without NSP lo	ss):		
FULL-SENTENCES	90.4/79.1	84.7	92.5	64.8
DOC-SENTENCES	90.6/79.7	84.7	92.7	65.6
BERTBASE	88.5/76.3	84.3	92.8	64.3
$XLNet_{BASE} (K = 7)$	-/81.3	85.8	92.7	66.1
$XLNet_{BASE} (K = 6)$	-/81.0	85.6	93.4	66.7

• SEGMENT-PAIR+NSP

• input has a pair of segments, which can each contain multiple natural sentence

• SENTENCE-PAIR+NSP

• Each input contains a pair of natural sentences,

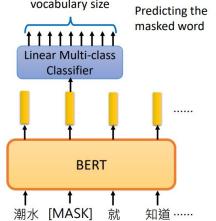
Conclusion

• using individual sentences hurts performance on downstream tasks

Model	SQuAD 1.1/2.0	MNLI-m	SST-2	RACE
Our reimplementat	ion (with NSP loss).			
SEGMENT-PAIR	90.4/78.7	84.0	92.9	64.2
SENTENCE-PAIR	88.7/76.2	82.9	92.1	63.0

- 4. Dynamically changing the masking pattern applied to the training data
 - Static masking (BERT)
 - masking once during data preprocessing
 - Dynamic Masking
 - duplicated 10 times so that each sequence is masked in 10 different ways over the 40 epochs of training
 vocabulary size

	Masking	SQuAD 2.0	MNLI-m	SST-2
XLnet	reference	76.3	84.3	92.8
BERT _{BASE}	Our reimp	lementation:		
DAGE	static	78.3	84.3	92.5
	dynamic	78.7	84.0	92.9



Large new dataset (CC-NEWS)

• BOOKCORPUS (16G)

• Original data used to train BERT

• CC-NEWS (76G)

• Collected from the English portion of the CommonCrawl News dataset

• OPENWEBTEXT (38G)

• Open-source recreation of the WebText (GPT)

• STORIES (31G)

 containing a subset of CommonCrawl data filtered to match the story-like style of Winograd schemas

• Total 160G

Conclusion

........ 114

Why PsyQA use these model?

• GPT - 2

- Pretrained Chinese GPT-2 available <u>does not</u> train on any corpus related to psychology or mental health support
- \circ $\,$ $\,$ Train a GPT-2 from scratch based on the corpus.
- RoBERTa
 - The task requires to assign a strategy label to each sentence in a **long answer**

Picture Source

Google

https://seeklogo.com/vector-logo/268022/google-2015-icon

• Transformer

 https://www.kindpng.com/imgv/TJoJmbi_transformers-generations-combi ner-wars-leader-logo-transformers-hd/

• Unicorn

 https://play.google.com/store/apps/details?id=com.appcraft.unicorn&hl=z h_TW&gl=CN

• Bert

 https://www.kindpng.com/imgv/iTxobRi_bert-png-bert-png-cartoon-bert-ses ame-street/

RoBERTa

https://toughpigs.com/afd-mural-art/